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ABSTRACT

A vector differential equation for the error due to sampling in closed

loop hybrid computer programs is developed using several approximations derived

with Taylor series expansions. The equation is applicable to general hybrid

programs with no restriction on the manner in which the computing operations

are allocated between the analog and digital computers. The major restrictions

necessary for the error equation to apply are:

(1) the problem equation must be expressible as a set of first order (linear,

nonlinear or time varying) equations,

(2) the digital-to-analog converters must be zero-order hold,

(3) all converters and numerical methods of the digital computer must have

the same sampling period,

(4) all digitally generated functions must be computed during the same time

period and converted D-to-A at the same time and finally,

(5) the sampling period must be small.

The error equation is linear. Its homogeneous part is independent of the

allocation of operations between the analog and digital computers, but its

forcing function depends on the details of such allocation and certain constants,

namely: the sampling period, the digital execution time and the order of numeri-

cal methods used in the digital computer. Both parts of the error equation de-

pend on the problem solution variables, but these can be either the true solu-

tions or the actual hybrid computer solutions.

Solution of the error equation typically requires machine computation, but

several properties of sampling error are apparent from the form of the equation.

For example, since the forcing function on the error equation is proportional to

the first power of the sampling period, it follows that the hybrid computer is
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a first order computational method. It is also apparent from the error equa-

tion that the execution time of digitally generated functions has the same

general effect as a non-zero sampling period but weighted twice as heavily.

The error equation is expected to be useful in studying existing hybrid

computer programs, in allocating computing operations between the analog and

digital computers and in compensating against sampling error.
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GLOSSARY OF PRINCIPAL SYMBOLS

u(t) - ideal vector solution of problem equation

x(t) - ideal vector solution of equation programmed on the analog computer

z(t) - ideal vector solution of equation solved digitally

h	 - vector of functions equated to u(t)

f.	 - vector of functions equated to X(t)

fa	- vector of functions generated and used in the analog computer

f 
	 - vector of functions generated digitally for use in the analog computer

g	 - vector of functions equated to i(t)

t	 - time

n	 - order of vectors

p	 - order of numerical method

cp	 - principal error function of numerical method

6	 - sampling period

e	 - execution time of digital computer

k	 - index of discrete time

t	 - discretization error in numerical method

r(t) - total hybrid computer sampling error vector

y(t) - sampling error vector for analog computer

cr(t) - sampling error vector for digital computer

F 
	 - output of D/A converter with f  as input

Z(t) - output of D/A converter with z(t) as input

u*(t) - vector solution of problem equations which accounts for hybrid computer
sampling error (similar notation for other variables)
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GLOSSARY OF PRINCIPAL SUMOLS (CONT'D.)

6h/au - a matrix defined in the Appendix
(a similar notation for other variables)

0[g(6)] - a symbol denoting that some variable (which is 0[g(6)]) goes to zero
with 6 at least as rapidly as g(6)

u(t) = x(t) 1
z(t)J

h 	 _ ^

fa + fd

g

f	 = fa + f 

r(t) = Ict(t)]
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INTRODUCTION

The work reported herein is a part of a general study of sampling

errors in hybrid computation being carr.;!d out as one of several tasks

under the current research program. Earlier work on the same problem

has been reported in Technical Notes Nos. 8, 12, and 
13.[1],[2],[3]t

In these reports a differential equation for sampling error in certain

hybrid computer applications is derived and evaluated in test examples.

The objective of the present technical note is to document further

study which has unified and generalized earlier work. Specifically the

present document derives a differential equation for the sampling error

in a general class of hybrid computer applications. The results apply

to any allocation of computing tasks between the analog and digital

equipment and take into account errors in the numerical techniques used

in the digital computer. The restrictions on the present analysis are

listed on pages 5 and 6 in the body of the report. The most important

restrictions are:

(a) The implicit requirement that the problem equation can be ex-

pressed in "state variable" form (given as (1) on page 3).

(b) The assumption that the D/A converters are zero-order hold.

(c) The assumption that all converters and the numerical method

have the same sampling period.

(d) The assumption that all digitally generated functions are con-

verted D-to-A at the same time after a common execution time.

tNumbers refer to references listed in the Bibliography.



These assumptions are much less restrictive than those used in Tech-

nical Notes Nos. 8, 12, and 13 since the earlier work applies only in ap-

plications for which the digital computer serves as a digital function

generator. It can be noted, however, that the general sampling error equa-

tions derived in this technical note reduce to those of the earlier notes

in the special cases for which the earlier work applies.

In order to place clearly in evidence the underlying assumptions lead-

ing to the sampling error equation, the approach in this report is to devel-

ope equations for the hybrid computer system including the effect of sampling

error. Using this result an equation for the sampling error, defined as the

difference between an ideal solution of the problem equation and a hybrid

solution accounting for sampling error, is derived. The technical note

then examines the form assumed by the error equation in several special

cases and gives a numerical example illustrating a general hybrid computer

implementation.
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DEVELOPMT OF HYBRID COMUTER EQUATIONS

In order to obtain tractable results it will be assumed that the hybrid

computer is programmed to solve the ideal equation

u(t) = h(u(t) ; t} .	 (1)

The u(t) is an n-vectort of component outputs.

Equation (1) is implemented on the hybrid computer as sho• . in Figure 1,

where the double lines represent the flow of vector quanr=cies. The ideal

equation (1) can be partitioned to place in evidence the ideal equation solved

by the analog computer and the ideal equation solved by the digital computer.

The result is

x(t) = fa(x(t),z(t);t) + fd(x(t),z(t);t) 	 (2)

and

z(t) = g(x(t),z(t);t)' 	 (3)

where (2) is integrated by the analog computer to yield x(t), (3) is integrated

by the digital-computer to yield z(t), f a is a vector function generated in the

analog computer, f  is a vector function generated in the digital computer,

[xuzJ	

ad
 =	 and h =

8

tThroughout the report variables without numerical subscripts are vector
quantities, whereas variables with numerical subscripts are scalar quantities.
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Figure 1. General Hybrid Computer Implementation
of Equation (1).
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Note that the hybrid computer is used in a general way with the exception

that no functions are generated with the analog equipment for use in the

digital computer. Such a possibility is not included for two reasons,

namely, it seldom affords any practical advantage and the sampling errors

occuring when the analog equipment generates functions for use inthe dig-

ital computer are no different than when such functions are produced in the

digital computer.

Since (2) and (3) are ideal equations, the next step is to formulate

equations which account for the sampling errors present in actual hybrid

equipment. The following assumptions concerning the operation of the

equipment are made:

(a) The only sources of error are the non-zero sampling period of the

A/D converters, and the discretization error of the numerical method used

by the digital computer.

(b) The numerical method used by the digital computer to solve (3) is

a method of order p with principal error function cp.

(c) The D/A converters are zero-order hold so that their outputs,

Fd or Z, are stair-step functions of time.

(d) The vector of variables z(k6) is computed digitally prior to the

time t = k6 when its components are sampled by the D/A converters. This

assumption requires that the execution time, necessary in computing z(k6)

from values of z[(k - 1)6] and x^k--1)6], be less than 6.

(e) The sampling periods of all of the converters and the step size of

the numerical methods are all equal and denoted 6.
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(f) Finally all components of the function f d[x,z;k6] are computed

in a time interval a from values of x and z at k6 and all are converted

D-to-A at t = k6 + e.

While the assumptions are made to make the problem tractable, they

are all reasonable. Assumption (a) is made to isolate one type of error

for consideration. Assumption (b) limits the numerical method of the

digital computer to one for which "order" and "principal error function"

are useful properties. Assumption (c) and (d) are satisfied in almost all

hybrid computer applications. Assumption (e), that all converters and the

numerical method have a period 6, is restrictive but is a condition fre-

quently used in practice. Finally, assumption (f), while restrictive,

corresponds to one fairly common mode of operation.

Non-ideal equations corresponding to (2) and (3) and to the inter-

connection diagram of Figure 1 can now be obtained by expressing the

assumptions listed above mathematically. Since any error will cause the

solution of the non-ideal equations to differ from that of the ideal equa-

tions, the non-ideal hybrid variables will be denoted x*t(t) and z*(t).

Assumption (c) results in the expressions

Z *(t) = z *(i6), i6 s t < (i+l) 6	 (4)

and

Fd(t) = f  {x*(i6),z*(i6);i6}, i6 + s t < (i+1)6 + e 	 (5)

for Z*(t) and F d (t), the outputs of the D/A converters. Note that execu-

tion time a appears in (5) in accordance with assumption (f). Equations

(4) and (5) along with Figure 1 can be used to express the equation solved

by the analog computer as

6



x*(t) = fa(x*(t),Z*(t);t) + Fd (t) .	 (6)

The ideal equation to be solved by the numerical method in the digi-

tal computer is (2) with x(t) replaced by x*(t). Because of this change

the solution of the ideal equation is no longer z(t), and (2) is written

as

P (t) = g(x*(t),z'(t);t)
	

(7)

A relation between z'(t), the true solution of (7), and z * ( i6), the

numerical solution of (7), must now be obtained. In numerical analysis,

sampling error is typically referred to as "discretization" error, and

in keeping with the general assumptions other errors introduced in the

numerical solution of (7) will be neglected. Many different algorithms

for the numerical solution of (7) exist. For most of these, the so-

called accumulated discretization error given by

e(i6) = z *(i6) - z'(i6), i = 0,1,2 . . . 	 (8)

can be approximated asymptotically as the solution to an equation of the

form 

s(t) _ ^ e(t) + 6 py(z';t); e(0) = 0	 (9)

tSuch equations are discussed for example by Henrici [4]. For (9) to apply
for Runge -Kutta type algorithms the function g must be evaluated at several
points internal to the basic [ 16,(1+1 ) 6] interval. This requires that a
forcing function implicit in g must be sampled at a rate higher than 1/6.
This does not pose a problem if digital execution time rather than charac-
teristics of the D/A and A /D converters are assumed to determine the minimum
sampling period.

For predictor-corrector type algorithms (9) is more approximate than
for one - step or Runge -Kutta type algorithms since it neglects error in
starting predictor -corrector procedures.
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where g is the function on the right-hand side of (7), p is the order of

the numerical method and the accumulated discretization error at t = i6

is e(t=i6). The function 9 is termed the principal error function, and

in all cases for which (9) applies expressions for it are available. The

symbol 6g/6z' with g and z' both vectors is defined in the Appendix. Note

that (9) is a linear equation whose solution can be expressed as

e(t) = 6p eo(t)

where eo (t) is the solution of (9) with p = 0. Hence if e o (t) is bounded

as will be assumed, for small 6 e(t) is 0(6p).t

It is useful to introduce a continuous variable z*(t) by the definition

z*(t) = z' (t) + e(t) . 	 (10)

Here z'(t) is the true solution of (7) and c(t) is obtained as the solution

of (9). An inspection of (8) and (10) shows that z*(t) is the digital com-

puter output at the discrete time instants t = i6, i = 0, 1, 2, . . . A

differential equation for z*(t), namely

i*(t) = g{x*(t),z'(t);t} +a , e(t) + 6 py(z';t),	 (11)

results from differentiating (10) and using (7) and (9).

Equation (11), which involves the variables z *(t), z' (t), and e(t) can

be expressed in terms of only the first of these variables through use of

the general approximations developed in the Appendix. Consider the first

tThe symbol 0(6p) has the following significance. If f(6) is 0[g(6)1 as
6 -y 0, then there exists a positive constant c such that jf(6)j 5 cjg(6)1
for 6 sufficiently close to zero.
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two terms on the right -hand side of (11), namely g(x *(t),z'(t);t) + ^, e(t).

Use of (A-2) t shows that for small e(t) this sum is approximately equal

to g(x* (t),z'(t) + e ( t);t), or using (10), to g(x*(t),z* ( t);t). Similar

reasoning results in the expression

cp(z';t) = rp( z *(t) - s(t);t) = cp( z *(t);t) - a
	

e(t).	 (12)

Using these expressions for g and cp in (11) then yields

z *(t) = g(x *( t),z *(t);t) + 6pCP1 z *(t);t)	 (13)

after neglecting the term 6p ^ e(t) which is 0(62p).

Equations (13) and (6) are the equations effectively solved by the

hybrid computer system accounting for sampling error but assuming that 6

is small.

tEquations numbered (A- ) appear in the Appendix.
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DEVELOPMENT OF SAMPLING ERROR EQUATIONS

A sampling error vector r(t) can be defined as the difference between the

solution of the ideal equations and the hybrid computer equations which account

for sampling error. Thus

	

Y(t)	 [x(t) - x*(t)
NO _	 _	 (14)

	

a(t)	 z(t) - z*(t)

where F(t) is the total hybrid computer error vector and y(t) and a(t) are,

respectively, the analog and digital computer error vectors. Differentiation.

of (14) yields

	

Y(t)	 X(t) - X*(t)
(15)

^ (t)	 z(t) - z*(t)

A differential equation for error is obtained by subtracting (6) from (2)

and (13) from (3). The result is

y(t) = fa(x(t),z(t);t) - fa(x* ( t),Z*(t);t) + fd( x(t),z(t);t} - Fd ( t) (16)

a(t) = g(x (t),z(t);t) - g(x *(t),z*(t);t)	 - 6pY(z*(t);t) .	 (17)

Use is now made of the general approximations developed in the Appendix to re-

duce ( 16) and (17) to a more tractable form by neglecting higher order terms in

the variables 6, a and Y which are assumed to be "small." Specifically, terms

0(6 2), O(y2), 0012) and O (a6) are neglected.
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First consider the staircase variables Fd (t) and Z*(t). Using (A-6) and

(A-8) these can be approximated as

Z*(t)	 z*(t) - [ 6/2 + S(t)]z*(t)	 (18)

Fd(t) — fd{x*(t),z*(t);t) - [A+-2 2e + S(t-e) fd{x*(t),z*(t);t) , 	 (19)

Using (18) and (19) in (16) then yields

Y(t) = fa{x(t),z(t);t) - fa{x*(t),z *(t) - [6/2 + S(t)]z*(t);t) 	 (20)

+ fd{x(t),z(t);t) - fd{ x*(t),z*(t);t) + 622 e + S(t-e) fd{ x*(t),z*(t);t) .

Equation (A-2) is then used to modify (20) and (17) to the extent that all of

the functions on the right-hand side of these equations have as argument the

non-ideal hybrid variables x*(t) and z*(t). For example,

of	 of
fa{x(t),z(t);t) = fa{ x*(t),z(t);t) + ax*

a 
Y(t) + aZa ,(t)

The result of this step after canceling certain terms is

afa	afa
	

a f 
d
	 afd	

afa z*(t) + 6 ' faY(t) 
ax* Y( t) + az* «(t) + ax* Y(t) + az* ot(t) + S(t) az*	 2 az* z*(t)

+ `622e) fd {x*(t),z *(t);t) + S(t -e) fd{x*(t),z*(t);t)	 (21)

a{t) !-'X; Y(t) + aR a(t) - 6pcp { z *(t);t)	 (22)

In these equations and the error equations below ce(t=0) = Y(t=0) = 0.

11



In (21) note that the two terms involving S(t) are forcing functions for

the linear differential equation. Thus, assuming the conditions of approxima-

tion 3 in the Appendix aru met, the contributions of these terms to y (t) will

be 0(6 2) and hence they can be neglected.

Each term on the right-hand side of (21) and (22), after neglecting the

terms involving S, is multiplied by one of the small quantities y, a, or 8.t

Thus an application of (A-2) to change the arguments of the functions on the

right-hand side of (21) and ( 22) to the ideal variables x(t) and z(t) will

result in added terms which are all of higher order in the small quantities.
afd

For example, the term aX** ^y(t) can be expressed as

	

afd {x*(t),z*(t);t)	 afd {x ( t),z(t);t)
	

a 2 f d 2	 a2fd

Y(t) ax*	 - Y 	 ax	
ax 

2 Y (t)	 azax `VY

and the last two terms are 0(y 2) and 0(nty), respectively. Thus (21) and (22)

can be written as

afa	afa	 afd	 afd
	 6 afa	 /6+2e-,

Y(t)	 ax Y(t) + az a(t) + ax Y(t) + az cr(t) + 2 az g +	 2 ')fd (23)

and

&(t) — SaY(t) + az ot(t) - 6pcp	 (24)

tAll practical numerical methods have p z 1 since this is necessary for conver-
gence of the numerical solution to the ideal solution as 6 approaches zero.

12



where to the accuracy being considered the arguments of the functions can be

either the ideal or the non-ideal hybrid solution variables and time. t In

obtaining (23), (3) is used to replace z(t) with g(x(t),z(t);t).

Equations (23) and (24) represent the most general form of the equations

for sampling error to be considered in this report. Note that the equations

are linear but can be time varying if the partial derivatives of f a , f  or g

depend on time.

Using the previously defined quantities h and r, (23) and (24) can be

written more compactly as

ah	 bit aza g + b2
	

d
2e 

fNo = au r(t) +	 (25)

- bpcp

Note that the homogeneous part of the sampling error equation depends only on

the total function h, which is independent of how the equations are divided

between the analog and digital computers in the hybrid implementation. The

function h in turn depends on either the ideal solutions or the hybrid solu-

tions and on time. The forcing function for (25), on the other hand, depends

on how the equations are divided between the analog and the digital computers

(i.e., on f  and g). It also depends on the principal error function cp of the

numerical method, either the ideal or hybrid solution variables and on the con-

stants b, a and p.

t Such arguments will be understood below unless otherwise stated. As a further
change in notation the approximate equality sign will be replaced by the
standard equality sign.

13



For purposes of solving the error equation numerically, it may be expedi-

ent to use the chain rule to express fd in (25) as

dfd afd	afd	 afd

dtz g + ax f + at

afd
where 

at 
accounts for the explicit dependence of f d on t. With the possible

use of the result of (26), (25) can be programmed for a general purpose computer.

The required vector operations can be performed by the computer whose only in-

puts can be a specification of the functions f a , fd , g and cp; either the ideal

or hybrid solutions of the given equation (i.e x(t),z(t) or x*(t) and z*(t))

and the constants b, a and p. t It is, of course, possible to closely approxi-

mate x(t) and z(t) by also solving (2) and (3) when using a digital computer

and thus remove the necessity for these functions as inputs. Another possibili-

lity would be to solve (25) on the hybrid computer along with (2) and (3). In

this case x*(t) and z*(t) would be used in (25).

(26)

tThe work of Moore [5] and Reiter [6] may provide an efficient and accurate
method for machine generation of the required partial derivatives.

14



THE ERROR EQUATION FOR CERTAIN SPECIAL CASES

Certain more specific assumptions concerning the given equation or the

method of hybrid implementation result in simplifications of the general error

equation.

Hybrid Implementation with Zero Samplinx Error

Examination of (25) shows that in certain cases (which are trivial from a

practical point of view) the general error equation reduces to a homogeneous

equation with zero initial conditions so that the approximate error vectors

cv(t) and y(t) are zero for all time. This occurs for two cases, namely: (1)

the hybrid computer has b identically zero or (2) the following conditions

apply -fa is independent of z (hence af a/aZ = 0), fd is zero (hence i
d
 = 0),

and p is large (hence Sp is negligibly small).

That error is zero in both of these cases is intuitively obvious. Case 1

requires no further comment. Case 2 is just the condition for the equations for

y(t) and a(t) to be independent and the error in the numerical method nag:igible.

Hybrid Implementations with Negligible Error in the Numerical Method

Consider the term dptp in (25). This term which accounts for error in the

numerical method is 0(8 p) and hence will be negligible for p Z 2 if cp is bounded.

For such cases the error equation becomes

ah	
6/2 afa 

g + b22
e fdNo = au r(t) +

0

This equation applies in almost any case for which sophisticated numerical methods

are used in the digital computer.
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Hybrid Implementations Which are Predominated Analog or Digital

There are hybrid implementations for which either the analog or the

digital computations are trivial in the sense that only algebraic rather than

differential equations are solved. In such cases, the given equations are

integrated exclusively on either the analog or the digital computer. Equation

(25) then reduces to either

Y(t) = aX y(t) + 822e fd	 (27)

or

cr(t) = aZ 01(t) - 6 P 	 (28)

where f = fa + fd.

Equation (27) applies in the relatively important case of a hybrid imple-

mentation which uses the digital subsystem entirely as a function generator.t

Equation (28) applies, when the analog computer is used exclusively as an

"algebraic function generator" for the digital computer. Such implementat^_ons

a:e not in common use.

Hybrid Implementations with Uncoupled Analog and Digital Computations

Examination of (23) and (24) indicates that the equation for y(t) is

coupled to the equation for a(t) by terms multiplied by 
az	

Similarly, the

equation for ox (t) is coupled to the equation for y (t) by terms multiplied by

Thus for systems with 
of 

0 (23) is independent of (24) and for systemsax •	 aZ

with ax = 0 (24) is independent of (23) .

tThis special case has been examined in detail in earlier work. See [1], j2], [3].
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Note that when the latter condition applies cv(t) is neglibibly small if

p z 2. Note also that (23) and (24) being uncoupled does not necessarily make

either y(t) or ot(t) equal to zero.

Equations with Additive Forcing` Functions

In the equations (2) and (3) specified for solution on the hybrid computer

both g and f can contain implicitly the effect of forcing functions. For equa-

tions arising in many practical applications, the forcing functions have an

additive property such that f and g can be expressed as

f = g(x,z) + v1 M	 (29)

g = g ( x , z ) + v2 ( t )	 (30)

where vl (t) and v2 (t) are vector forcing functions which account for all ex-

plicit variations of f and g with t.

Equations (29) and (30) can be used with any of the forms of the error

equation. A tractable equation, for example, results from the use of (29) and

(30) in (25), namely

ah	 6/2 aza (g+v2) + b22e azd (g+v2 ) + -- (f+vl) + Vl (t (31)
r(t) = au r(t) +

- 6p 

where

vl(t),vl introduced in the digital computer
V1 (t) _

0	 ^vl introduced in the analog computer

17
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Linear Constant Coefficient Equations

For the hybrid solution of linear constant coefficient equations the error

equation reduces to a very tractable form which will be discussed in detail in

a later report.

18



EXAIPLEt

To illustrate the use of the error equation$ in a general but tractable

context, consider using a hybrid computer to solve Duffin's equations in the

form

ul(t) = u2 (t)
	

(32)

u 2 (t) = - u 1 W - . 06 u 1 3 (t) - 2u2 (t)	 (33)

ul (t=0) = 4, u2 (t=0) = 0 .

Assume that the digital computer uses Euler's method to solve (32), and that

(33) is solved on the analog computer with the term -.06 u 1 3 (t) generated

digitally. The general hybrid computer equations then become

X1 (t) = fal + fdl = [-2 xl (t) - z l (t)] + [-.06 z 1 3 ( t)]	 (34)

i 1 
M = xi W	 (35)

z  (t=0) = 4, x  (t=0) = 0 .

Use of (23) and (24) yield for the approximate error equations

Y 1 (t) _ -2y 1 (t) - [1 + .18 zl(t)] al (t) - 6/2 xl (t) - .18C
6 2 

.)z1(t) x
1 
(t)(36)

&1 (t) = y l (t) - 6/2[z l (t) + .06 z3 (t) + 2 xl (t)]	 (37)

'Several examples illustrating the application of the specialized error equation
(27) have been reported earlier. See 3].
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SOLUTION OF APPROXIMATE
ERROR EQUATION FOR ANY 8.
ERROR FROM SIMULATION

2 ,0	 A A	 OF HYBRID SYSTEM

0-0 8 = .01
®	 m A8=.08

a-08=.I

1.
• ^^/ 8

TIME (Sec) -^

rj/ 8

0

-1 OL _
	

NORMALIZED ERROR

4

2

0

-2

Figure 2. Various Errors and the True Solution Variables for a
Hybrid Computer Solution of Duffin's Equation.
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In obtaining (37), y(t) (which equals -z(t)/2 for Euler's method t ) is expressed

by the quantity in square brackets using (35) and (34;.

The results of solving (36) and (37) on a digital computer assiming e =

6/2 are shown in Figure 2. The variables a18 and y/6 are plotted versus time

in the figure and since (36) and (37) are linear the curves apply for any 8.

For comparison the errors were also determined by simulating the hybrid computer

on a digital computer and subtracting the simulated hybrid variables from the

ideal solution variables. Curves of a/8 and y/8 determined in this manner are

shown in the figure for three values of 8. The ideal solution variables xl(t)

and z 1 (t) are also given.

Note that the agreement between error computed from (23) and (24) and that

determined from the simulated hybrid system is almost exact for 8 = .01, be-

coming less exact but still reasonably good as 8 is increased ten fold to .1.

t See for example Henrici.[4)
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CONCLUSIONS

Equations (23) and (24) or the more compact (25) are differential equations

Cor the sampling error in a general hybrid computer system programmed to solve

a vector equation in the form of (1). The equations have evolved in the course

of several years of study on the subject contract and include all error equa-

tions derived earlier as special cases.

The allocation of operations between the analog and digital computers can

be arbitrary but operation of the hybrid computer must conform to the assumptions

listed on pages 5 and 6. The error equations hold for a small sampling period

and thus could be termed "asymptotic" error equations.

The complexity of the equation is comparable tc that of the given problem

equation. However, the equation is an explicit expression for sampling error in

terms of computable quantities and thus machine solution is quite feasible. The

assumptions as to the form of the problem equation and as to the details of the

hybrid implementation, while somewhat restrictive, do not prevent a range of

practical applications.

The sampling error equation is expected to have application in three areas,

namely:

The evaluation of sampling error for a given hybrid computer implementation.

Thr.. study of various allocations of operations between the analog and

digital equipment with a view to minimizing sampling error, and

In compensating for sampling error.

Although the major use of (25) is expected to occur in specific applications

for which an explicit numerical solution can be obtained, there are several facts

of interest which result from examining the forcing function of this equation in

its general form. First it should be noted that since (25) is linear each part
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of the forcing function produces a distinct effect on the solution of the equa-

tion, i.e. on sampling error. There are three parts to the forcing function,

namely:

of
(1) 6/2 a z g, which arises because of the discrete nature of z as produced

in the digital computer,

(2) 6+2e fd , which arises because the vector fiinction f d is generated

digitally for use in the analog computer, and

(3) 6pcp, which is caused by the discretization error of the numerical method

in the digital computer.

Since the initial conditions on the error equation are zero, its solution,

the sampling error, has three parts corresponding to t}, p three parts of the

forcing function. Parts (1) and (2) of the forcing function depend on 6 to the

first power and thus the hybrid computer, (with zero order sample and hold de-

vices), must be classified as a first order computational method.

The fact that part (3) of the forcing function depends on 6 to the pth

power brings up an interesting design point. If p, the order of the numerical

method, is 2 or greater, the term 6p is negligible with respect to the other two.

Thus since the execution time of the digital computer, (and hence 6) increases

with the order of the numerical method, it would seem inefficient to use a

numerical method of order greater than 2. Further, it would seem desirable and

possible to allot some computer time to compensating for sampling error and in-

creasing the order of the overall hybrid system. This could be done by con-

currently solving the error equation, expressed in terms of the non-ideal varia-

bles, and using x*(t) + 6(t) and z*(t) + a(t) as compensated variables.
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Fii.ally it sU.-juld be noted from examining part (2) of the forcing func-

tion that execution time, e, has the same effect on error as the sampling

period but weighted twice as heavily. Thus every effort should be made to keep

execution time at a minimum.
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APPENDIX

Differentiation of a Vector with Respect to a Vector: Let x be an n vector,

y a q vector and g(x,y) an m vector. Then the symbol ag(x,y)/ax is defined as

agl (x , y)	 agl(x,y)

ax 	
...
	

axn

aA(x.y)
ax (A-1)

agm(x,y)	 agmcx,y)

ax 
	

axm

Approximation (1): Consider the vector function g(x l ,x2+ A) where L is a vector

of increments in a portion, x2 , of the vector argument of g. If g is analytic,

use of its Taylor series expansion yields the approximation

ag(xl,x2)
g (xl , x2+ A )	 g(xl' x2) +	 ax	

'&(A-2)
2

which neglects terms which are O(Ai).

Approximation (2): Consider an analytic function g(t) depending on the scalar

argument t. Denote by Ik the intervals [ k6,(k+1)6), k = 0,1,2, . . . . On any

interval Ik the Taylor series for g(t) can be used to obtain the approximation

g(k6)	 g(t) - (t-k6) g(t), t e Ik	(A-3)

which neglects terms 0(6 2) since on Ik , It-k6) < 6.
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The term (t-k6), k = 0,1,2 . . . in (A-3) is a sawtooth function with

period 6 and thus has a Fourier series representation of the form

(t-k6), t a I  = a  + S(t)	 (A-4)

where

S(t) _ ` (a i cos uni t + b i sin wi t)	 (A-5)

i=1

and a  = 6/2, w  = 2ni/6, a  = 0, b  = -6/rri. Using (A-5) in (A-3) yields

g(k6) " g(t) - [0/2 + S(t)] g ( t ), t e Ik	(A-6)

An approximation of the form (A-6) can also be obtained for the function

G(t) defined by

G(t) = g(k6) ; t e I
k+e
	 (A-7)

where Ik+e is the interval [k6+e, (k+1)6 + e). The result is

G(t) — g(t) _ [ +2e - S(t-e)] 8(t)	 (A-8)

and the neglected terms are still 0(62).

Approximation (3): Consider a linear differential equation with the term

S(t)g(t) from (A-6) as a forcing function. Such an equation can be expressed

as

k(t)	 a(t)x(t) + S(t)$(t), 	 (A-9)
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with zero initial conditions. The solution of (A-9) is given by

t
x(t) = f cp(t;),) S(X) J(a) dA	 (A-10)

0

Under the assumption that the functions cp(t,a) and g(a) in (A-10) and also their

derivatives are bour_ded and continuous, it can be shown that the solution of the

differential equation, x(t), is 0(6 2).
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